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The stability of plane-parallel flows iu a flat pipe of large but finite length is studied for 

large Reynolds’ numbers on the basis of notions aboat the stability of homogeneous states 

[ 11. It is shown that plane-parallel flows with a convex symmetrical nnpertorbed velocity 

profile are not globally unstable. An example of a globaIly unstable flow with a velocity 

profile containing inflection points is constructed. 

Let ns consider the steady-state flow of a viscous incompressible fluid in a pips of 

constant cross-section and large length - L ,( z,( L. The Reynolds’ number computed 

over the width of the channel will be assumed sufficiently large. The velocity profile can 

be assumed Poisenillian and independent of x everywhere except the segments of finite 

length near the ends of the pipe. This region will be referred to as the principal part of the 

flow. We shall assume that certain ~m~independent boundary conditions have been specified 

at the pipe ends x = f L. These boundary conditions interrelate the perturbations of the 

hydrodynamic quantities and their derivatives and the boundary conditions at each end 

include the values of the indicated quantities at that end. An exampIe of this is the condi- 

tion that the velocity perturbation is equal to zero at x = f L. This condition cau be 

considered fulfilled if the fluid flows in and out through porous walls at the pipe ends. 

An important factor in the formulation of the problem is the inflow and outflow of the 

fluid through the boundaries of the region under consideration. 

Since the unperturbed state and conditions at the boundaries are steady, the depend- 

ence of the perturbations of velocity and pressure on time is given by the factor exp (-tit), 

and the problem consists in finding the eigenvalues of o . In the principal part of the flow 

for a given o the dependence of the perturbations on z is given by the factor exp ikr, 

where for each o the permissible values of k me determined from the condition of existence 
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of a nontrivial solution of the boundary value problem in the yz-plane perpendicular to the 

pipe axis (the z-axis). In the case of a flow between two planes, the value of k must be 

chosen in such a way that there exists a nontrivial solution of the Orr-Sommerfeld equation 

(e.g. see [Z] 1 

( d” --_/$)‘rp=ikR [(u-+)(-&--k3)Cp-g(pj 
dy2 

subject to the boundary conditions 

(0.11 

where y is a dimensionless coordinate, U (y) is the unperturbed velocity, and cp fy) is a 

function related to the stream function C/I fx, y, z, t) for the velocity perturbation, by the 

expression 

9 (2, Y, 2, 4 =cp (v) exp i (ks - at) 

Since the coefficient of the highest-order derivative in Equation (0.1) is constant, 

while the other coefficients depend on o and k analytically and do not become infinite 

for finite values of o and k , it follows that the solutions of Equation (0.1) depend on w 

and k analytically. Hence, the condition for the existence of a nontrivial solution of the 

problem (0.1) and (0.21, is of the form 

G (0, A$ = 0 (0.3) 

where G is an analytic meromorphic function of o.~ and k expressed in terms of the values 

for y = f 1 of the functions making up the fundamental system of solutions of Equation 

(0.11, and their derivatives with respect to y taken at the same points. 

By virtue of Equation (0.31, each o generally has infinitely many corresponding values 

ki (o), which are the eigenvalues of boundary value problem (0.11 and (0.2). Functions 

ki (w) are the branches of the analytic function k (o) which results from the solution of 

Equation (0.31. Each branch kj (01 corresponds to some wave of the form exp i[kj(o) z-ot] 

which propagates along the pipe. The conditions at the ends of the pipe together with the 

transitional zones (where the Poiseuille’s velocity profile is established) generate certain 

effective boundary conditions which, for z = f L, relate the amplitudes of the waves propa- 

gating in the principal part of the flow from the pipe ends. 

Our problem concerning the stability of flow in a sufficiently long flat pipe belongs to 

the category of problems considered in [I]. In fact, the dependence k (w) obtained from (0.3) 

is such, that for sufficiently large Im o. real values of k which would satisfy Equation 

(0.3), do not exist [2]. 

We shall assume that the boundary conditions for 1~ = f L guarantee the correctness of 

the problem’s formulation. This assumption is valid if, for example, for z = f L the velocity 

perturbation vanishes, since in this case the solution of the plane unsteady state problem 

of fluid flow exists, and is unique [3]. 

In [1] it is shown that for sufficiently large L the characteristic solutions which de- 

pend on time as exp (-iot) are reducible to two types - the unilateral and the global. The 

complex frequency w corresponding to unilateral solutions depends on the actual form of 

the boundary conditions at one of the ends. In global solutions, the limit of o as L +m 

does not depend on the actual form of the boundary conditions. The global characteristic 
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solutions are analogous to the quasiclassical solutions employed in the study of weakly 

nonhomogeneous systems [4]. 

For global solutions, the characteristic frequency with the largest imaginary part is 

generally the solution of the equation 

Im [k, (0) - k,+l (m)I = 0 (0.4) 

possessing the largest imaginary part. Let us denote this solution by w+. The functions 

k, (w) and k, + t(o) in Equation (0.4) denote the branches of the function k (01 for which 

Im (0) > 0 and Im k a+ t(o) < 0 for sufficiently large Im w, and which yield the solution of 

Equation (0.4)) with the largest imaginary part. The eigenfunction with o = O+ represents 

a self-maintaining system of waves corresponding to k, (0) and k,, 1 (01. The condition 

under which the value o., is associated with a certain eigenfunction of the problem under 

consideration is,that the boundary conditions for x = f L guarantee the reflection of the 

(s + 1) th aud s-th waves with amplitudes not identically equal to zero in o when the 

s-th and (s + l)-th waves are incident on z = L and z = -L, respectively. This condition 

is, usually always fulfilled, and it can always be achieved by a slight alteration of the 

initial conditions. Finally, in the exceptional case when this condition is not fulfilled for 

the s-th and (s + I)-th waves, the global eigenfunctions can be formed on the basis of 

other wave pairs for which the corresponding branches ki (a) and ki (0) are subject to the 

condition Im ki (0) > 0 and Im k. (w) < 0 with Im o snfficiently large. The resulting values 
I 

of o obviously have an imaginary part which is smaller than IX+. Hence, if Equation (0.4) 

has no solutions with Im w > 0, then there is no global instability. 

We note that the application of the results of [I] to systems in which infinitely many 

ki correspond to each w is based on the assumption of a possible limiting process wherein 

the boundary value problem for a system with an infinite number of waves corresponding to 

the prescribed o is obtained as the limit of a sequence of correct boundary value problems 

for systems with a finite number of waves. Although such a limiting process for Poiaeuille 

flow was not considered, the possibility of its realization appears entirely plausible. In 

addition, the existence of an eigenfunction corresponding to the solution of Equation (0.4) 

follows from the physical meaning of the phenomenon, independent of the total number of 

waves, involved in the passage and reflection of the s-th and (s + I)-th wave [l]. It is 

therefore interesting to investigate Equation (0.4) in connection with the problem of the 

stability of Poiseuille flow. 

As usual, along with the problem of the stability of Poiseuille flow, we shall JSO 

consider the stability of plane-parallel flows characterized by a differently specified 

unperturbed velocity U (y). We note that flows of a viscous fluid with a non-Poiseuille 

velocity profile in the absence of external forces can only be approximately considered 

plans-parallel, so that some caution is required in the interpretation of the obtained 

results. 

It will be shown below that if the unperturbed velocity profile is symmetrical 

(U (-y) = U (y)) and convex (U”(y) > 0 for all y) and, if the Reynolds’ number is suffi- 

ciently large, then Equation (0.4) has no roots in the upper half-plane 0. We shall later 

show au uperturbed velocity profile with inflection points such that the corresponding flow 

is globally unstable. 
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The presence of instability in the sense in which we understand it in the present 

study leads to an unlimited rise of perturbations in the flow, so that laminar flow becomes 

impossible; specifically, there cannot be a laminar flow segment at the pipe entrance. 

1. On the complex plane o, let us consider the half-plane Im o > b and examine the 

region Q (which may consist of several isolated parts) on the plane k,consisting of all 

points onto which the points of the half-plane Im Q > b are mapped by means of at least 

one of the branches ki LJ) of the analytic function k (o) given implicitly by Equation (0.3). 

Floundary of the region Q consists of curves which represent mappings of the straight line 

Im w = b onto the plane k. According to [2], with sufficiently large values of b the real 

axis of k does not belong to these regions. One can also say that for arbitrarily large b 

there exist points which belong to Q and lie in both, the upper Im k > 0, and the lower 

Im k < 0 half-planes k. It can be shown, for example, that if or + 00 in the upper half-plane, 

and if k remains bounded, then k + in n/2, where n f 0 is an integer (positive or negative). 

These values of k correspond to the eigenfunctions of the Laplace equation 

9” - k+cp _ (1 

to which the equation for ‘nonviscous’ [2] solutions reduces as Q + m. Thus, for a suffi- 

ciently large b, the region Q is separated into two parts - the upper part Q+ and the lower 

part Q_ which are not connected to each other. 

As b diminishes the region Q can only expand, since the corresponding region on the 

plane w also expands. If for b = 0 the regions Q, and Q, on the plane k remain separated 

by a certain strip parallel to the real axis k, then Equation (0.4) does not have solutions 

in the upper half-plane o. In fact, by virtue of the condition that the inequalities 

ImkS>OandImkS+t < 0 are fulfilled for sufficiently large b, and as a consBquence of 

the continuous dependence of k on o, we can say that for any w from the upper half-plane 

the roots ks and k,+, belong to Q+ and Q_ respectively, so that Equation (0.4) in our 

case is not fulfilled for o with Im otj > 0. The subsequent portion of the present study will 

be a proof of the fact that the regions Q+ and Q_ on the plane k defined for b = 0 (and 

denoted by Q+* and Q_*) by Equation (0.3), are for sufficiently large R divided by a strip 

parallel to the real axis of k. 

2. Let US consider the curves ki (0) (Im o = 0) which represent the mapping of the 

real axis of w on the plane k. These curves can serve as the boundaries of the regions 

Q+’ and Q_*. We note first of all that if some o = u + i b has a corresponding k = CL+ i@, 

then k = - CL + ifi corresponds to the value o = - u + ib, since for these values boundary 

value problem (O.l), (0.2) has an eigenfunction which is the complex conjugate of the 

initial function. Hence, we shall be concerned from now on only with those portions of the 

curves kj (0) which correspond to o > 0 (we denote these by k.* (o)). since the portions 
I 

of the curves ki (w) corresponding to w < 0 are in symmetry with them with respect to the 

imaginary axis of k. 

As we know [2 and s], only one branch w1 (k) of the function o (k), exists which 

assumes values with Im or > 0 for real k > 0. The values of k for which Im ot > 0 fill the 

segment [k, , k21 on the real axis of k, outside which Im or (k) <O. Hence it follows, that 

the curves ki* (0) intersect the real axis at the two points k, and k,. In [6] it is shown 

that for large Reynolds’ numbers, both of these points correspond to the intersection of the 
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real axis with the same curve, which we denote by k,* (0). The portion of this curve 

situated between the points k, and k, is situated in the lower half-plane, while the re- 

maining portion lies in the upper half-plane. 

The quantity Im w1 (k) is positive and bounded on the segment [k,, k,] of the real 

axis of k and negative outside this segment [Z] ; it is evident, therefore, that the curve 

k,* (01 represents the boundary of the region Q,’ in the lower half-plane k. For flows 

with a convex unperturbed velocity profile, the values k,* (w) with Im k: (0) < 0, the 

associated values of o and c = w/k. simultaneously tend to zero as R + m, although 

k,,* R and R Im k,* for the same values of k,* (w) tend to infinity. Since, with the 

exception of kz (cd, no other curves k** (~1 intersect the real axis of k, region Q_* and 

the curve k; (01 which forms its upper boundary lie in the lower half-plane. It is clear 

that if Equation (0.31 has a solution o with Im o > 0 for large R, then Im ks + 1 + 0 as 

R + m . Let us therefore consider the branches of the function k (0) which satisfy this 

condition. 

3. Assuming the Reynolds number to be sufficiently large, let us consider in more 

detail the relationship k (01 which assures the existence of a nontrivial solution of 

boundary value problem (0.1) and (0.2). S’ ince R appears in Equation (0.1) in the form of 

the combination kR, we shall consider only those values of k for which kR >> 1. 

In proving the aforementioned statement that the regions QT and Q_’ are separated 

by a strip parallel to the real axis of k, we need not consider the small region k * l/R, 

since the latter cannot contain the closed portion of the region Q*. The latter statement 

follows from the fact that the region k< l/R h as no points corresponding to w = 00 

(k + inn/Z, n # 0 as o + m in the upper half-plane). 

As we know, [2 and 71, boundary conditions (0.2) for y = - 1 for sufficiently large 

kR can be written as follows: 

Cl% C-1) + c,cp, C-1) + C&3 (-1) = 0 (3.11 

Cl%’ (-1) + C,rp,’ (-1) + C&J (-1) = 0 
(3.21 

Here and below a prime denotes the derivative with respect to y. Function ‘pr is the 

solution of the ‘nonviscous’ equation 

(U - c)(cp” - /?C#) - U”rp = 0 (3.3) 

which has no singularity at the point y = y,, where u (y,,) x c G o / k. For small c 

we have the equations ‘pl (-1) = - c / u’ (-I), and ql’ (-1) = 1 (it is assumed 

that U’(y) is continuous and the U/(--l) + 0). 

Function ‘ps outside some interval of values of length y of the order l/(kR)$ with its 

center at the point y, coincides with the solution of nonviscous equation (3.3) which has a 

singularity at the point y,. Within the indicated interval, 9s satisfies the equation which 

takes viscosity into account. 

According to [7], for small c we have 

(p2 (-1) = 1 2’ (-1) = “’ (“I 
U’ (-1) 

[f (z) - In 1 kl<U’ (-1) I”‘] (3.4) 
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where f ftl ia a complex function of the variable 

Here and everywhere below we assume that -3rr/2 < arg k <n/2. 

Asram, the function f(z) behaves as In [- zU,‘(- 111. Here we tahe that branch 

of the logarithm, which is equal to In 1 z] + i arg (- rj, so that for large real P > 0 the 

asymptotic equality IJI~‘(--~) = lU” (yC) / u’ (-i)] (ln c- in) is fulfilled. This 

representation is valid [S] if -n/6 < arg z < 7 n/6. 

If o is real and positive, and if Im k < 0, then 0 < arg z < 2 ~$3. For finite I the 

function f(a) does not become infinite, since the equation taking account of viscosity 

which the functioncpt, satisfies, has no singularities [7]. 

The function ~1s represents a rapidly varying solution of the ‘viscous’ equation 

cp 
,,,, 

= ilcR (U - c) q” (3.5) 

and diminishes with increasing y. This solution for large ]kR] very rapidly tends to zero 

with increasing y if -3r$2 < arg k < d2. 

By introducing the new variable 77 in place of y, we can transform Equation (3.5) into 

the form 12, 7 and 91 

(3.6) 

where in the neighborhood of the point y, the variable q is related to y in the following 

way: 

rl = - (y - $4,) MU (-l)l“S 

For smal1 values of c, the appropriatsIy normalized solution 93 for y = -I satisfies 

[2, 7 and 9] the conditions 

q)3 (-1) = 1, (Pa’ (-1) = - y;yll’* 
Here 

(3.7) 

(3.8) 

For large z, 

If the Equation (3.5) we replace io and ik by their complex conjugates, this equation 

will be satisfied by the solution which is the complex conjugate of the first. On making the 

indicated sabatitution, instead of the initial value of z we obtain a value symmetrical to it 

with respect to the straight line arg I = 5rr/6. 

Since the complex conjugate sointion is the same one to within a factor, it is possible 

to choose the normalization factor in such a way that the solution9)a (t) assumes real 

values on the straight line arg z = 5n/6 and the complex conjugate values at the points 

symmetrical with respect to this straight line. The same condition must be satisfied by all 

monomials consisting of the solution cpr Iz) and its derivatives invariant relative under the 

multiplication of q)s and r by arbitrary constants, and specifically hy the function D (x)/z. 
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The results of the numerical computation of the function cpat carried out in [9] confirm the 

above statements (see the values of ‘p 3 and its derivatives for 7 = 0 and the asymptotic 

behavior of the function D (2) as z +oo cited above). 

From the results of [9] it foll ows that the function D (z) does not vanish or become 

infinite at finite points of the real axis z, and assumes real values only at the point 

z = z1 J 2.3 and as z + 00, when D (z) + 0. The aforementioned symmetry property of the 

function D (z)/z implies that D (z) is likewise bounded on the straight line arg z = 27r/3. 

The boundary conditions for y = 1 are written in the same way. In the case of flows 

with a symmetrical profile, the conditions for y = 1 are usually replaced by the conditions 

of symmetry of the eigenfunctions in the middle of the channel for y = 0. Since the boundary 

value problem we are considering is invariant relative to the replacement of y by -y, all 

of the eigengunctions are either even or odd. For karge kR, at the point y = 0 the contribu- 

tion of the solution 93, to the eigenfunction needs not be considered, since this solution 

diminishes rapidly with distance from the wall. Hence, in determining the even engenfunctions 

one must guarantee fulfillment of the condition 

(3.9) 

the analogous condition in determining the odd eigenfunctions being 

UJ, (0) + C2’P.a (0) = 0 (3.10) 

Together with (3.1) and (3.2). one of these conditions represents a system of equations 

for finding C1 , C1, and C,. Let us denote the linear combinations of the solutions ‘p, and 

‘$2, which satisfy the conditions (3.9) and (3.10) respectively, by cpcl) and (p”) . Con- 

ditions (3.1) and (3.2) can then be written as 

(3.11) 

4. Let us show first of all that if k (01 tends, for real o , to a real value k, as kR + 00, 

then k, = 0 and the corresponding value c (kJ + 0. 

Let us suppose that k. f 0. Here arg k, is equal to 0 or -n, and arg z is equal to 0 

or 27r/3 (we assume that w > 0). 

We consider first the case where c does not tend to zero as kR + m . Here z + 0~. 

Equations (3.7) and (3.8) imply that [cp, (-1) /v3’( -I)]-+ 0 as kR + 00. If c is not small 

then (p, and (Pn are slowly varying functions of y in the neighborhood of y = -1, and 

Equation (3.11) implies that T’~’ (-1) -e 0. In the limit we obtain the eigenfunctiou ‘p’“, 

which satisfies the nonviscous equation and nonviscous boundary condition of impermeabi- 

lity ‘pfi’ (-1) mm: 0. We know [2 and 101, however, that the nonviscous problem for flow 

with a convex unperturbed velocity profile has a solution corresponding to real k and c 

only in the case when k = 0 and c = 0. This contradicts the initial assumtion whereby c 

does not tend to zero. 

Now let c + 0 and k -B k,, as kR + 00. Since D (z) does not become infinite on the rays 

arg ;,= 0 and arg z = 2n/3, it follows that the magnitude of (ps’ (-1) is of the order of 

(kR) 3. The quantity ~2’ (-1) tends to infinity in the above limiting process, since if z 

remains finite, then cp_’ (-1) _ I In / kR / ’ J. and if z + 00, then (pc’ (-1) - In c* 
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Here (pz’ (-1) d oes not exceed In (kLC)“z in the order of magnitude. The quantity 

rpt’ (--I) remains finite. Hence, Iv,’ (- i) / F?‘( - 1) 1 .--b ?c‘ and 

Ii&’ (-1) itp,’ (-I)1 --I* 00 as kR +O”* Equation (3.2) here implies that either C, + 0 

and C, + 0 fthe quantity C, is assumed finite) or, that (CJC,) + 0, 

In the latter case the term c,,(p,, in Equation (3.1) can be neglected. 

In Iv, (--I) /rp2 (-l)] --, C),F .quation (3.1) here implies that C, + 0 in this case 

also, so that C, + 0. 

Thus, if c + 0 as kR -+ m, solutiou of the boundary value problem in the limiting case 

reduces to a nonviscous solution C~I, which satisfies the nonviscous boundary condition 

‘PI (--if 3 (since rpZ (-- if c --l.- Ii). As already stated, this is possible only 

if k = 0 and c = 0. 

The associated eigenfunction 91 (,?/) .-- ti (!/), is even [lo]. 

From the foregoing it follows that the curves k* (a) which for large kR have points 

near the real axis of k, correspond to even eigenfunctions and can approach the real axis 

k only for small k and c. 

5. Let us consider the curves k* hf corresponding to even eigenfunctions for suffi- 

ciently large values of kR and small c and k. We shall be interested in the behavior of 

these curves in the Iower half-plane k, SO that the inequalities -Zn/3 < arg z < 0 are 

fulfilled for the corresponding values of t. 

For k = 0 the solution (P, is of the form [IO] 

and is even, so that q~r’ (0) mu r) for k = 0. E quation 13.3) implies that for smell values 

of k the derivative yt’ ((1) : xh-“, where X is a real number. The solutions ‘p1 and qr 

are independent, so that 9,’ (0) + () for k = 0. Since the derivative (El’ ($1) is real 

(rpL (y) is real [Z] for 9 > y, 4 (1 [(iiR-“.j), it follows that for small k the even 

nonviscous solution q(r) is of the form 

tp 
(1) .--: cpt -I- u/&p, (5.2) 

where u is a real constant. Using the explicit form [Z] of solutions % and q, in the 

neighborhood of y = yc and the constancy of the Wronskiao, we can show that Q> 0, 

Making use of the values of 91. and c&)z and their derivatives for y = -1, we cart write 

Equation (3.11) in the form 

Here the first two terms and the function F Ix) are equal to 

11 .;. ~/‘,‘~I” (_~f) ;c(p’t) ‘(-.-l)J. p’ (S) - It n (2) ‘-71 ’ 

respectively. 

Equation (5.3) for large z and small real c and k, when f(z) - In (kRU’)g = In c - in 

coincides with the corresponding equation of [2]. A s is shown in [6], the fact that the 

upper half-plane of w includes part of the unique curve o (k) (Im k = 0) implies that the 

function F fz) has neither zeros nor poles in the upper half-plane 2. On the real azis F (2) 
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vanishes only for z = 0, where it has a simple zero (since D (0) b 0). Function F (2) + 1 

as x+m. 

If x -+ m as kR + m, then the second term in the left-hand side of Equation (5.3) has 

the order of c In c and tends to xero as c + 0, while F (z) + 1. If x remains finite as 

kR + 00, then F (2) is finite, and the second term in (5.3) has the order of 

cln(kR)“~-c(lnz-lnc)-clnc and tends to zero as c + 0. Finally, if 

z -P 0 as kR + OQ, then F (2) - z. and the second term in Equation (18) is of the order of 

[In (kI?)lW(kB)‘~~ 1 relative to F (2). Thus, the second term in Equation (5.3) for large 

kR and small c is always small as compared with F (I) and can be neglected in the first 

approximation. The resulting equation 

with allowance for the relation z -= c [kR / u” (-l)l”a makes it possible to find the 

functions k (t) and w (E), 

(5.5) 

with accuracy directly proportional to kR. One branch zr (0) of the curve I* (or) represent- 

ing the dependence (5.5) of I on real o > 0,iutersects the real axis of L at the point 

z = xX = 2.3 (where F (z) is real) and with increasing w goes to infinity in the upper half- 

plane I, asymptically approaching the real axis [6]. Retention of the second term in Eqna- 

tion (5.3) has the result,that the curve I+* (0) intersects the real axfs a second time at 

some finite a = zI such, that the sum of two last terms in Equation (5.3) is real. 

The value za, as well as x1, corresponds to real values of w and k (zI and x, determine 

neutral oscillations) ; za + DO as R + 00, which is a consequence of the asymptotic small- 

ness of the second term in Equation (12) as compared with the third. 

Upon introduction of the new variables Q = a’hR*ko, and K = a’AR’hk, 

Equations (5.5) assume the universal form 

These equations do not include the Reynolds’ number or the parameter CL, which 

depends on the form of the unperturbed velocity profile. As z + 0, the quantity a tends to 

zero, and K remains bounded. 

On the complex plane K let us consider the curves K* (Q) corresponding to the real 

values 9 > 0 and lying in the lower half-plane K. The corresponding values of x evidently 

lie in the sector 0 < arg z < 2rr/3. 

As was noted above, F (I) does not vanish or become infinite for E f 0 in the upper 

half-plane, hence large value of k on the curves K* ((2) are associated with large values 

of z, and vice versa. Here F (2) - 1, and from Equations (5.6), in accordance with Equation 

(5.4), we obtain 

Q =K3 (5.7) 

This equation corresponds to the nonviscous limit in Equation (5.4). By virtue of 
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Equation (5.7), the upper half-plane fl on the plane K is associated with three sectors 

-0 < arg K < n / 3, -2d3 < arg K < - n/3, -4nJ3 < arg K < - XC 

As follows from (5.6), on the z plane for large I and when F (zf = 1, these sectors are 

associated with the sectors 

0 < arg 2 < 7d3, 4d9 < arg 2 < lkd9, &t/9 < arg 2 < 5d9 

each of which for F (2) = 1 corresponds to the upper half-plane St. We note that all these 

sectors lie in the region obtained by adding in the upper half-plane z that portion of the 

plane I, which is symmetrical to it with respect to the straight line arg z = 5n/6. Through- 

out this region, as in the upper half-plane, F (rf + 1 as z + 00, and the function F (t) has 

neither zeros nor po’ies. For not excessively large values of z and k, when F (z) 4 1, the 

boundaries of the regions corresponding to the upper half-plane fi on the pianes z and K 

no longer coincide with the boundaries of the indicated sectors. 

Let us consider the curve K* (a) bounding 

the region Q_* , which for large X coincides 

-~- 

with the lower sector -2~13 < arg I( < -rr/3. 

Since F (z) does not vanish on this curve, it 

follows by (5.6) that z = 0 corresponds to the 

value Q = 0. For small z we have [9] the equa- 

tion F (2) = IA exp f-iStr/6), A J 1.1925. 

FIG. 1 

According to the second equation of (5.6). the 

value E = 0 is associated in the lower half- 

plane K t-n < arg K < 0) only with the value 

K = -iA-‘/’ = -iO.8976. Making use of Equa- 

tions (5.61, we can find for this value of K 

that the argument of the increment dz corresponding to & > 0 is equal to n/3. 

The curve K_* (9) and the associated curve z * (a) were obtained with the aid of a 

computer. To this end we integrated along the line - * (Q) the differential equation (3.61, z 

with the initial conditions for 9 = 0 taken from [9]. F- or each z we computed D (2) using 

Formula (3.81, the right-hand side @ (t) = .rqf2 [l - D Cz>/.z] in the first equation of (5.61, 

and its derivative with respect to I. 

The argument of the increment bz for each step was determined from the condition 

Im [CD (z + AZ)] = Im cf, (2) + Im 10,’ (z) Azz] = 0. The arpmnt of the first 
step was taken equal to n/3. The length of each step was JAzl = 0.001. 

Results of the computations appear in Table 1, and the curve K_* (f8 is shown in 

Fig. 1. The curve K_* (0) corresponding to a > 0 lies in the region Re X < 0, Im X < 0 

amd represents a portion of the boundary of the region Q*. 

The other portion of the boundary of the region Q* corresponds to negative values of 

fi and is symmetrical to the curve K_* (a) with respect to the imaginary axis. 

The curve X: (Q) representing the boundary of the region Qi (Q: for large K breaks 

down into the two sectors 0 < arg K < n/3 and -4n/3 < arg K <d was computed in a 

similar manner in its portion lying in the lower half-plane K. Differential equation (3.6) was 

computed firat along the real axis of I from zero to the point z L= a1 n 2.3, where Im @ (2) 
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TABLE 1 

0 
2 

t 

1: 
150 
30 
40 
60 
89 

: 1871 
0: 3839 
0.5937 
0.8185 
1.058 
1.716 
2.447 
4.080 
5.900 
9.947 

14.42 

T - RCX 

: 08950 
0: 1601 
0.2168 
0.2645 
0.3065 
0.3980 
0.4806 
0.6404 
0.8024 
1.128 
1.463 

I - Imz 
- 

0 
0.1187 
0.3558 
0.5576 
0.7518 
0.9473 
1.439 
1.932 
2.919 
3.906 
5.879 
7.851 

- 

- ReK- l ImK- l 

-: 08085 
-0: 15G4 
-0.2245 
-0.2855 
-0.3405 
-0.4580 
-0.5553 
-0.7102 
-0.8335 
-1.029 
-1.182 

-0.8976 
-0.9061 
-0.9297 
-0.9628 
-1.001 
-1.041 
-1.144 
A.244 
-1.428 
d.595 
-1.879 
-2.119 

vanished, whereupon the argument of each subsequent step AZ was found from the condi- 

tion Im @ (z + z) = 0, as was described above. We note that the results of computing 

differential equation (3.6) along the real axis coincided with the numerical data of [9] to 

within three places. 

The results of computing the curve X: (a) appear in Table 2. The curve K: (a is 

shown in Fig. 1. Symmetrical to it with respect to the imaginary axis is the curve core 

responding to negative values of a and likewise representing the boundary of the region 
+ 

TABLE 2 

n/i00 I - 
Y- 

n 

2.381 2.350 
2.458 2.387 
2.818 2.593 
3.508 2.984 
4.556 X.478 
5.239 :;. 778 
5.7CJ3 3.978 
6.828 4.474 
7.837 4.967 
8.794 5.4fifi 
9.802 5.966 

11.99 6 .966 
14.28 7.966 

IIn2 

--__ 

0.01216 
0.02387 
0.07980 
0.1532 
0.2242 
0 ‘1410 
OZ338 
0.1716 
0.09227 
0.05810 
0.05916 
0.06851 
0.06233 

- 

I ReK+* Im K+* 

1.012 --0.002792 
1.037 --0.01548 
1.210 -0.0/,558 
1.268 -_I). IJJlO 
1.487 -0.1474 
1.621 -0. 1553 
1.705 --U.15lJB 
1.880 --0.1082 
1.980 -0.05519 
2.040 -0.0.3253 
2.106 --0.03157 
2.258 --0.03331 
2.401 -0.02818 

n is the number of steps in computing differential equation (3.6). 

From Tables 1 and 2 and Fig. 1 we see that the regions Q+’ and Q_* are separated 

by a strip parallel to the real axis of K. Hence, Equation (0.4) does not have real roots 

with Im o > 0, and plane-parallel flow with symmetrical convex uperturbed velocity profiles 

for large Reynolds’ numbers is not globally unstable. 

6. Now let us consider the stability of plane-parallel flow in a pipe when the un- 

perturbed velocity pmfile has inflection points and when the velocity differs from a con- 

stant value only in zones of small width as compared with that of the pipe. These zones 
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are adjacent to the pipe walls and constitute boundary layers. The unperturbed velocity 

profile is assumed to be symmetrical and the Reynolds’ number is considered sufficiently 

large. 

We shall now assume that the dimensionless quantities r, k and the Reynolds number 

R in Equation (0.1) are computed from the thickness of the boundary layer (within which 

U f 1). Here the dimensionless thickness of the boundary layer is equal to unity, and the 

dimensionless half-width of the channel can be denoted by h + 1 and assumed sufficienrfy 

large. We choose the origin of y at the outer boundary of the boundary layer, so that y = -1 

at the wall and r = h at the center of the channel. 

Let us consider for small values of k and c the eigenfunctionfp(‘) (y), which is sym- 

metrical with respect to the middle of the channel. The eigenfunction q(K)(y) oan be 

represented as a linear combination of nonviscous solutions (P!” = opt + AT, every- 

where with the exception of the layer adjacent to the wall. The constant A is determined 

from the condition that q(t) (h) = 0 at the center of the channel (see Equation (3.9)). 

The boundary conditions at the wall ‘p (-1) = 0, and 9’ (-1) = 0 must be 

satisfied with allowance for the viscous solution 93. Just as was done above in obtaining 

EquaKion (5.3) through the use of the values of 91, (p2, and (pa and their derivatives for 

Y = -1, we obtain an equation relating o_r and k for an arbitrary A, 

In Section 5 we showed that if k -+ 0 with a constant unperturbed velocity profile, then 

A + ak’, and this value was used in deriving Equation (5.3). If, on the other hand, is + co 

as k + 0 in such a way that the product kh does not tend to zero, then, as will be shown 

below, the quantity A does not tend to the value ak’. 

Outside the boundary layer U”(y) = 0 and any nonviscous solution can be represented 

as the linear combination C,e kr + c,e-k Y. For k = 0 the solution 91 is proportional to 

II (y) - c, so that ~1~’ (0) = 0. F or small values of k the quantity qPr’ (0) is of the 

order of k’. Neglecting this quantity, we find, that for y > 0 

qI =cosh kZJ (6.2) 

Let us denote the values of qpz (0) and 92’ (0) for k = 0 and c = 0 by a and 6 (a 

and b are reaQ, respectively. From the linear independence of the solutions q1 and (p(pz 

it follows that & f 0. For small k and c the values qpz (0) and 9%’ (c’) can differ from 

o and 6, respectively, by not more Khan a quantity of the order of magnitude of max fk’, c). 

This implies that the equation 

qIo = $rnnky (6.3) 

is approximately fulfilled for y > 0 in the case of smafl k and c. 

From the condition rp’ (h) = 0 we find here that 

A 1:: - ;tpahA% (6.4) 

If k is decreased without limit for a fixed h, then A becomes proportional to ka, as 

was assumed in the derivation of (5.3). If, on the other hand, k tends to infinity for a fixed 
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k and Re k > 0, then the first term in Equation (5.1) assumes the form w/k’ chacteristic 

of a boundary layer [Z and 111. A s shown above, for small k and c and a sufficiently large 

kR, the second term in Equation (5.1) is smaI1 ss compared with F (z) and can be ne- 

glected in the first approximation. Equation (5.1) then becomes 

Let us first consider the nonviscous case when 

F (z) = I. Here the regions Q+* and Q_ are of the form 
shown in Fig. 2. Each of the closed regions Q_*t*‘, 

Q-*‘?I, . . , in the lower half-plane k corresponds to the 

entire upper half-plane o. The size of each of them along 

FIG. 2 FIG. 3 

the vertical is n/Zh. For a sufficiently large Reynolds number, the effect of the viscosity 

on the picture in Fig. 2 is limited to regions where the quantity z, whose order of mag- 

nitude is uR’Js/ h?fz, is small, i.e. to neighborhoods of the points k = 0 f inn/h at 

which w vanishes. Specifically, as was shown above, in the small neighborhood 

\k[ < l/h of the point k = 0, the behavior of the curves bounding the regions 0,’ and Q_’ 

is of the form depicted in Fig. 1. 

Now let ua consider somewhat larger values of k when one must consider terms in the 

dispersion equation in addition to those retained in Equation 16.51. We shall assume that 

F fzl = 1 and Re kh >> 1, so that kh = 1 for k with Re k > 0. Here the dispersion equation 

of the problem under consideration coincides with the dispersion equation for a nonviscous 

boundary layer. As we know 12 and lo], if the unperturbed veIocity profile contains an 

inflection point, then there exists an interval on the real axis of k whose points are asso- 

ciated with w whose Im w > 0. This means that in this case the boundary of the region 

Q: which occupies a large part of the upper half-plane k, drops below the real axis of k, 

as is shown in Fig. 3. The depth 6 by which the lower boundary of the region Q: drops 

tends to a finite limit as h +OQ. If A is sufficiently large, so that n/Zh < 6, it folIows that 

lorer boundary of the region Q_*(r) turns out to lie above the lower point of the region 

Q+ * Since the region Q_*(‘) corresponds to the entire upper half-plane o, it is clear that 

there must exist pairs of values of k, one of which belongs to the region Q: and the other 

to Q:(r) corresponding to tbe same w with Im o > 0. Thus, Equation (0.4) is fulfilled for 

certain values of w from the upper half-plane, and the flow under consideration is globally 

unstable, 

The above result appears to indicate that the boundary layer is unstable at sufficiently 

large Reynolds’ numbers, although on taking the limit as h + m in the nonviscous case the 

dimensions of the regions Q, *(I), Q +(2), .., _ situated in the lower half-plane diminish 
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without limit, and each of them tends to the point k = 0. 

In the presence of viscosity and a finite h, boundaries of the regions Q+*(l), 

Q * 2) . . ., alter their positions relative to the nonviscous case. although in the 

neighborhoods of the points where o, and therefore E, become infinite, the function k (01 

retains the same form as it has in the nonviscous case. 

Perturbations corresponding to the value of k h) from the region Q, *(if for large h 

are gradually damped out with distance from the wall (the damping decrement is equal to 

Re k h) I. The perturbations in question propagate principally in the outer region with 

repect to the boundary layer and, as is easy to verify, represent solutions of the Laplace 

equation. 

The author is grateful to S.V. Iordanskii for discussing with him questions relating 

to the present study and to I.E. Kireeva for preparing the required computer program. 
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